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The method of asymptotic integration [1] of three-dimensional equations of
electroelasticity is used to construct a solution for the general cale of anisotro-
py of the problem of equilibrium of a thin piezoelectric layer the plane edges
of which are free of electrode coating and are acted upon by specified, external
mechanical forces. A fundamental iterative process is constructed, which mak-
es possible the estimation of the validity of various simplifying assumptions
made in the course of constructing the practical theories [2-4]. It is establish-
ed that the absence of a plane of material symmetry within the layer parallel

to its middle surface does not affect the construction of the first iterative step,
but affects the derivation of the relations in the subsequent approximations,

1. Let us consider a thin piezoelectric layer of constant thickness 2h. We assume
that the mass forces and electrical volume charges are absent from the layer and the
external physical forces are specified on the plane edges of the layer, The magnetiz-
ability of the layer is neglected.

We adopt the undeformed middle plane of the layer as the xz,2, coordinate plane
— h L z3 <h , and assume that the field of deformations appearing in the layer
is characterized by the vector R (ryy, rss, r'ss, res, I'ng, I'12) » the stress field by the
vector T (2, tss, t3q, f23, £13, t12) » 20d the displacement field by the vector u

(uy, ug, ug)» The electrostatic field appearing in the layer is characterized by the
potential E (E,, E,, E,) and electrical induction D (D, D, D,) vectors, Let
us denote by v the electric field potential, E,, = dv / dz,,, and introduce the di-
mensionless quantities
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§1=71v §2:7‘—, §3=T$7 A=— (1.1)

where @ is a linear parameter, We shall call the layer thin, if its dimensionless half-
thickness A is less than one, The equations of electrostatic equilibrium assume the
form [5, 6]
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Bitr; + Ootin 4 5~ Ostiz = 0, 91Dy + 85Dy - —— 33D =0 (1.2)
(0; =0/0%;, i=1,2,3)
The thermodynamic relations connecting the mechanical and electrical characteristics

of the layer in a linear manner can be written in the form [1]
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R::S'l‘»{—-z—j;—-GD, E = — T+ BD (1.3)

Here S denotes the symmetric matrix of the flexibility moduli s;;” measured at

a constant value of electric induction, B is a symmetric matrix of the coefficients
of dielectric susceptibility B, measured under constant mechanical stresses, G isy
in general, a nonsymmetric matrix of piezoelectric moduli g; jand a prime denotes
transposition .

We shall assume that at least one of the electromechanical constants $;,7, 5,57,
g3 (i =1, 2, 3,6), g1 gj5 Bis' G = 1,2) is different from zero, i.e. we shall
consider a general case of anisotropy of the layer material,

Assume that the plane edges of the layer are not covered by the electrodes and,
that external mechanical forces are specified at these edges, i.e.

tig = qsi» Dy=0, Eg= 41 (L4)

where g+; (§;, &) are known functions, When the plane edges of the layer are
covered by the electrodes, the relations (1. 3) must be written in a different form,

2. Let us now construct the basic iterative process [1] fo which the solutiont of the
problem (1,2)=—(1.4) can be reduced. Without affecting the generality of the invest-
igation, we can assume that

gei= 2 N} R
Aol

Let us denote by P any characteristics of the electroelastic state of the layer,
As in [1], we define it in the form of a series

o

P =1" 3 AP (2.2)

[oymary

The index m assumes integral values, characteristic for each quantity. The values
must be chosen in such a2 manner, that substitution of the expressions of the form (2, 2)
into the relations (1,2) —(1.4) and equating the expressions accompanying like powers
of A yields a noncontradictory sequence of sets of equations for determining the coeff-
icients of (2, 2) with nontrivial solutions, We shall call such values of m noncontradic-
tory. Taking into account the assumptions (2. 1), we find that

m = —3 for a lug
m=— 2 for aluy, a lus, a7, ty, tas, tie, Dy, Dy
m = —1 f0r ¢4, tss, Dy;

m=0 for fss

The recurrent system of differential equations and the comesponding boundary conditions
assume the form
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For practical application of the iterative process (2, 3) we use the method given in
[1]. For the first two approximations(n == 0,1)we have

ud? = uf"" (&, &) (2.4)

X(") X(n , 0} § M u(n 0) 11y, ('i _ §3z) BnB;le“llI nw1,0}
X{" = B MaX{™” — 5B M Mu{™® + 1, (4 — Eg2) XD
XM = Bt (M,By; + BiaMy) BtMoMpud™
X5 = Yl 8) QY 2~ 8) Q57 —
Vo (1 — Es?) My Bt MoMuS™ — /g (85 — &%) MyX{MY
159 = Y2 (g5 + ¢'%) + ¥4 (Bs — YaEa?) (657 — 4B +
Vs (1 — E2) M (QUY — Q) -1/, (&5 — &) M, (QU
QU — Yaa (1 — &2 MM XM

The system of differential equations for the unknown X ;(™® (1, (M0 yo(™0), p(™.0))
and 49 has the form

;;12:32 IM X(n W0 1)!2 (Q(“*l) . Q&“*l)) 4 1f33f2.'xgﬂ.l) (2.35)
M, My Bt MM = 3, (57 — ¢4 + M, (Q\"" + Q(—nnl))]

When n<- 0 , wehave (2.3)—(2.58) P =0

3. Letus now consider a thin piezoelectric plate the plane edges of which are
free of physical forces, with the factors deforming the plate specified on its side sur-
face, In this case we have

X = X0 g (Mpul® — By M@=y 4 (3. 1)
1y (1 — &?) Bu B M Muy™"

X(zn) M®\») leng(n 20 £ BIM, (Mlu(gn’o) _
BuM @) 4 Y, (1 — &) X(ﬂ,l)

XE0 = —31a (1 — &) My BAM, (M — BuuMs @) —
Vg (Bs — E5%) My X§™Y

1 = — 5 (1 — Eg?)? MM XEY (= 0,1)

O™ = (91", 93",

R G “‘”‘axaz
ﬂfa = 0 0

The vector X;(™0 is written in the form
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X(n 0 X(n ,0) + X(n ,0)

Here the vector X{’" represents a particular solution of an inhomogeneous vector
equation of the system (2, 5) in which Q. (™ == , and the components of the vec-
tor X{%” are given by

a{” = S [(s50:® — 530102 + 5202%) 9" —

—J;“ (82191 — g110s) o] d&y + ™y - i
N
gy = S [(52205® — 5340102 + s1202%) 9" —
H
e (82001 — £1203) ‘Pgn)] dgy — c™E,; - an)

&1
" = — S [(g1201% — 81010 + guuB2?) o +

(ﬁi%al ﬁuaz) (P(n) dEy + 5

where ¢™, ¢M;, and' ¢™), are constants characterizing the rigid rotation and dis-
placement of the plate in its middle surface, and (™ denotes the zero potential of
the electric field,

The system of differential equations for the functions ¢, @, and  p,(0
assumes the form

Lagi™ + = _1__ Lol =0, Lo¢\™ — Logi™ =0 (3.2)
MIMQ'BQIMQM,R(“ ') — MMy’ Byt M 3By M s®-1

Ly = Biady® — 210105 + B110,2
Ly = — g2301® + (812 + £26) 01702 — (821 -+ g16) 0192% + gu105°
Ly = s3,01% — 253401°9> + (2513 -+ 566) 0,°0;® — 2510,05° + 51105

As before, we shall assume that the quantities in (3, 1) and (8, 2) accompanied by
the index » vanish when n << 0.

In order to satisfy the boundary conditions on the edge surface of a thin piezoele~
ctric plate, we must constiuct additional iterative processes describing boundary layer-
type solutions [1], The basic iterative process is however sufficient to fulfil these co-
nditions in an integral manner,

We note that the first two equations of (3. 2) coincide with the system of solution
equations of the applied theory of generalized plane stressed state of thin piezoelectric
plates constructed in [2, 3] by averaging the fundamental electromechanical character-
istics, The last equation of (3, 2) coincides formally with the equation of the classical
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theory of flexure of thin anisotropic plates [6]. Both applied theories presume that
the plate has a plane of material symmetry parallel to its middle surface.

4. Analyzing the relations (2. 4), (2.5) and (3. 1),(3. 2), we can conclude that
the absence of the plane of material symmetry parallel to the middle surface does not
affect the construction of the initial iterative step of (2, 3), and becomes manifest only
in the derivation of the further approximation relations, Consequently the basic form-
ulas of thegeneralizedplane state of stress of a thin piezoelectric plate obtained in
[2,3] by averaging the electroelastic characteristics and under the assumption that a
plane of material symmetry parallel to the middle surface exists, also hold for the thin
piezoelectric plates with general anisotropy properties, The last argument is also val-
id for the anisotropic, classical-type plates. This can be shown by assuming that all
piezoelectric moduli are equal to zero.

From (2.4) and (3. 1) it follows that in the case of asymmetric loading of the pie-
zoelectric layer or plate, the Kirchhoff hypotheses hold in the zeroth approximation
and the hypothesis of the linearity of the electrostatic field introduced in [4] fails even
in the zeroth approximation, irrespective of the presence of the plane of material sy-
mmetry,
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