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The method of asymptotic integration [l] of three-dimensional equations of 
electroelasticity is used to construct a solution for the general tale of anisotro- 

py of the problem of equilibrium of a thin piezoelectric layer the plane edges 
of which are free of electrode coating and are acted upon by specified, external 
mechanical forces. A fundamental iterative process is constructed, which mak- 

es possible the estimation of the validity of various simplifying assumptions 
made in the course of constructing the practical theories [2-41. It is establish- 

ed that the absence of a plane of material symmetry within the layer parallel 
to its middle surface does not affect the construction of the first iterative step, 
but affects the derivation of the relations in the subsequent approximations. 

1. Let us consider a thin piezoelectric layer of constant thickness 211. We assume 

that the mass forces and electrical volume charges are absent from the layer and the 

external physical forces are specified on the plane edges of the layer. The magnetiz- 
ability of the layer is neglected. 

We adopt the undeformed middle plane of the layer as the rg, coordinate plane, 
-h.<x,,(h, and assume that the field of deformations appearing in the layer 

is characterized by the vector R (rI1, rz2, rs3, r23, r13, r12) , the stress field by the 

vector T (t,,, t2.2, t33r t23, &, t12) * and the displacement field by the vector u 
(Uir ua, us). The electrostatic field appearing in the layer is characterized by the 

potentia1 E (I?,, E2,’ E3) and electrical induction n (Or, Ds, 0s) vectors. Let 
us denote by v the electric field potential, E, = 8~ / &,, and introduce the di- 
mensionless quantities 

where a is a linear parameter, We shall call the layer thin, if its dimensionless half- 
thickness h is less than one. The equations of electrostatic equilibrium assume the 
form [5,6] 

drtii + aztiz t_ G askis = 0, a,Dl + a,D, +- + a,D3 = 0 (1.2) 

(ai = a/a&, i = 1,2,3) 

The thermodynamic relations connecting the mechanical and electrical characteristics 
of the layer in a linear manner can be written in the form [l] 
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R=ST+-&GD, E=--CT-j-BD (1.3) 

Here S denotes the symmetric matrix of the flexibility modufi sijn measured at 
a constant value of electric induction, B is a symmetric matrix of the coefficients 
of dielectric susceptibility pijf measured under constant mechanical stresses, G is, 
in general, a no~ymme~ic matrix of piezoelectric moduli gij and a prime denotes 
transpc&&n . 

We shall assume that at least one of the electromecba~ca~ constants sipn, sisn, 
gsi (i = 1, 2, 3, 6),&~ gj6r Pjst (i = %,2) is different from zero, i. e. we shall 
consider a general case of anisotropy of the layer material, 

Assume that the plane edges of the layer are not covered by the electrodes and, 
that external mechanical forces are specified at these edges, i. e. 

ttS = Cl&i, is), = 0, 53 = f r (X.4) 

where 921: (El, .&I are known ~nc~ons. When the plane edges of the layer are 
covered by the electrodes, the relations (1.3) must be written in a different form. 

2, Let us now construct the basic iterative process [l] to which the solution of the 
problem ( 1.2)~( 1.4) can be reduced. Without affecting the generality of the invest- 
igation, we can assume that 

Let us denote by P any characteristics of the electroelastic state of the layer. 
As in [l], we define it in the form of a series 

The index m assumes integral values, characteristic for each quantity. The values 
must be chosen in such a bier, that summation of the expressions of the form (2.2) 
into the relations (1.2) -(l. 4) and equating the expressions accompanying like powers 
of J. yields a n~con~adicto~ sequence of sets of equations for determining the coeff- 
icients of (2.2) with nontriviat solutions. We shall cali such values of m noncontradic- 
tory. Taking into account the assumptions (2. I), we find that 

7?2 = - 3 for a-k,; 

m. = - 2 for a-l q, a-&, a%, tslr tzz, k, D1, Dz; 

mm- 1 for tlS, t23, B3; 

m=O for t33. 

The recurrent system of d~ff~~t~a~ equations and the co~~~n~g b~nda~ con~tio~ 
assume the form 
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where 

&I,$) = A,lX(,n-2) + A12X(3n-') -L &g”’ 
&xl’“’ = - Ml@ + &J@‘) + BlaX$+2) + A2&-+) 

B,,Xr'= M,XI"'-- B22Xr-1)- A31tg-2) 

d,Xp’ = - M,‘Xr’, a&) = - M,X$” 

Xp’ = F-1) Qlt 7 t&= &, T;s = +-1 

xl"' = (zp, up, u'"'), xp = (t~',t~',t~',DI"',D~') 
XF’ = (tg’, t&‘, Or’), Q:“’ = (& &, 0) 

An = j& & & & gu, & g,,j 

DD 1 
A12 = (~5, ~1, 4n g,,), -421 = (8 sD - g,,) 357 247 

A31 = (s,“,, & &, - g13, - g22), Ml = (a,, 82,O) 
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For practical application of the iterative process (2.3) we use the method given in 
[I]. For the first two approximatio~(~z = O,$)we have 

When IE c: 0 , we have (2.3) -(2.5) pint s 0 

3, Let us now consider a thin piezoelectric plate the plane edges of which are 
free of physical forces, with the factors deforming the plate specified on its side sur- 

face. In this case we have 

The vector X1@tO) is written In the form 
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Here the vector XlTb;“’ represents a particular solution of an inhomogeneous vector 

equation of the system (2.5) in which QkCn) s 0 , and the components of the vec- 

tor X:'I';"' are given by 

51 
(%a) = 

%.I s IGh2 --s~d~a2+s~a22)qp- 

0 

where c@), @)I, and’ c@& are constants characterizing the rigid rotation and dis- 
placement of the plate in its middle surface, and cs@) denotes the zero potential of 
the electric field. 

The system of differential equations for the functions (pr@), fpg(n) and r@,O) 
assumes the form 

As before, we shall assume that the quantities in (3. I_) and (3.2) accompanied by 
the index n vanish when n < 0. 

In order to satisfy the boundary conditions on the edge surface of a thin piezoele- 
ctric plate, we must construct additional iterative processes describing boundary layer- 
type solutions Cl]. The basic iterative process is however sufficient to fulfil these co- 
nditions in an integral manner. 

We note that the first two equations of (3.2) coincide with the system of solution 
equations of the applied theory of generalized plane stressed state of thin piezoelectric 
plates constructed in [Z, 33 by averaging the fundamental electromechanical character- 
istics. The last equation of (3.2) coincides formally with the equation of the classical 
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theory of flexure of thin anisotropic plates [S). Both applied theories presume that 
the plate has a plane of material symmetry parallel to its middle surface. 

4. Analyzing the relations (X4), (2.5) and (3.1),(3.2), we can conclude that 
the absence of the plane of material symmetry parallel to the middle surface does not 
affect the construction of the initial iterative step of (2,3), and becomes manifest only 

in the derivation of the further approximation relations. Consequently the basic form- 
ulas of thegeneralizedplane state of stress of a thin piezoelectric plate obtained in 
[Z, 31 by averaging the electrcelastic characteristics and under the assumption that a 
plane of material symmetry parallel to the middle surface exists, also hold for the thin 

piezoelectric plates with general anisotropy properties. The last argument is also val- 
id for the anisotropic, classical- type plates. This can be shown by assuming that all 
piezoelectric moduli are equal to zero. 

From (2.4) and (3.1) it follows that in the case of asymmetric loading of the pie- 
zoelectric layer or plate, the Kirchhoff hypotheses hold in the zeroth approximation 
and the hypothesis of the linearity of the electrostatic field introduced in [43 fails even 

in the zeroth approximation, irrespective of the presence of the plane of material sy- 

mmetry. 
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